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Abstract. A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-
dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner
crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with micro-
scopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where
ε is the energy of the charge excitation. We then derive the main exponential dependence of the elec-
tron conductivity in the linear (L), i.e. σ(T ) ∼ exp[−(TL/T )γL ], and current in the non-linear (NL), i.e.
j(E) ∼ exp[−(ENL/E)γNL ], response regimes (E is the applied electric field). Due to the strong anisotropy
of the system and its peculiar dielectric properties we show that unusual, with respect to known results,
Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of TL and
ENL and the values of γL and γNL.

PACS. 73.50.Bk General theory, scattering mechanisms – 72.20.Ee Mobility edges; hopping transport –
71.45.Lr Charge-density-wave systems

1 Introduction

Issues related to transport in low-dimensional electronic
systems are challenging, the main difficulties being to take
into account of disorder or interactions and in some cases
of the interplay between them. As known from Mott and
Towse [1], for strictly one-dimensional (1D) systems, any
disorder leads to localized states. Such a statement implies
that localization and transport properties of 1D Anderson
insulators may be tackled perturbatively by considering
the limit of a weak disorder (so called Gaussian disorder
where the density of impurities N → ∞, their strength
W → 0 while NW 2 is constant). For such a weak disor-
der, and in the absence of electron-electron and electron-
phonon interactions, Berezinskii [2] has confirmed the
statement of Mott and showed that the a.c. conductivity is
given by: σac(ω) ∼ ω2 log2 ω. Subsequently, his approach
has been extended by Gogolin, Mel’nikov and Rashba
(GMR) [3] to the case where an electron-phonon coupling
is present. They have shown that three-dimensional (3D)
phonons provide a delocalization mechanism for the elec-
trons at temperatures low enough that the scattering is
mainly elastic, e.g. τin(T ) � τel where τin(T ) is the inelas-
tic phonon scattering time and τel is the elastic scattering
time on the static defects. This delocalization mechanism
leads to a power-law hopping for the d.c. conductivity, e.g.
σ0(T ) ∼ T 3, where the power comes from the phonon-
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scattering time. It should be noted that their arguments
are not valid at the lowest temperatures; in particular,
they hold only above T0 ∝ 1/τel, here and below: � = 1
unless specified. Subsequent studies aimed at exploring
the effect of electron-electron interactions in 1D Anderson
insulators. In this respect, it has been shown [4] that, in a
Luttinger liquid, the Gaussian disorder is strongly renor-
malized by interactions. For repulsive interactions, each
impurity becomes effectively strong. The 1D disordered
interacting system is then equivalent [5] to an ensemble
of weak links where impurities act as wire breakers. As a
consequence, the power-law hopping laws acquire a non-
universal exponent, e.g. interaction-parameter dependent.
More recently [6], the low-temperature situation where the
coupling to phonons is absent and electron-electron inter-
actions dominate has been addressed. The modern notion
of dephasing, due to these electron-electron interactions,
has been considered as the delocalization mechanism of
the electrons. It leads to a power-law hopping regime,
reminiscent of the results of GMR, followed by a drastic
suppression of the conductivity [7]. Less explored, from
microscopic techniques, is the low-temperature regime:
T � T0 ∝ 1/τel, with both electron-electron and electron-
phonon couplings. In this case, it is generally believed that
the transport is of the variable-range hopping (VRH) type.
In systems with 3D phonons, that we shall be concerned
with in the rest of this manuscript, semi-phenomenological
arguments by Mott [8] suggest that the VRH laws are
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Fig. 1. d.c. conductivity as a function of temperature for
a quasi-one dimensional system coupled to three-dimensional
phonons. In the range of temperatures displayed, phonons pro-
vide a delocalization mechanism for the charge excitations of
the system. Power-law hopping (PLH) dominates at temper-
atures T � T0 and variable-range hopping (VRH) dominates
at T � T0 (T0 ∝ 1/τel where τel is the elastic scattering time
on the static defects).

characterized by stretched exponentials and read:

σ(T ) = σ0(T ) exp[−(T0/T )γ ], (1)

where γ ≤ 1. In 1D, T0 ∝ 1/νξ, where the single-particle
density of states ν ∝ 1/vF and the localization length
ξ ∝ vF τel. Hence, T0 ∝ 1/τel, and the exponential de-
pendence manifests at T � T0 ∝ 1/τel. In the oppo-
site case, the temperature dependence of the conductivity
arises mainly from the pre-factor: σ0(T ), which depends
on the electron-phonon coupling, and leads to power-law
hopping, see Figure 1 for a summary of regimes. The suc-
cess of Mott’s arguments came from their wide experimen-
tal confirmation for a great variety of disordered systems,
i.e. it has been found experimentally that γ ≈ 0.25 in
isotropic 3D and 0.33 in isotropic 2D systems, in accor-
dance with the theory. Later, Efros and Shklovskii (ES),
see reference [9] for a review, extended these arguments to
the Mott-Anderson insulators where, besides strong disor-
der, the long-range Coulomb interaction is present. Once
again, their results were confirmed by a great variety of
experiments in the field of doped semiconductors where
the exponent γ ≈ 0.5 in all dimensions [10] as predicted
by ES.

In the present study, we focus on the low-temperature
transport properties of strongly disordered and interact-
ing two-dimensional (2D) quasi-1D electron systems. The
latter consist of a 2D periodic lattice of parallel wires and
therefore display markedly anisotropic properties with re-
lations to the 1D world, see references [11] and [12] for re-
views on 1D physics. We assume that impurities are point-
like and act as wire breakers. Interactions are long-ranged
and lead to a large parameter: rs = UH/εF , corresponding
to the ratio of the Coulomb energy-scale: UH = e2/κa (κ is
the dielectric constant of the host lattice in which the 2D
system is embedded), to the kinetic energy scale given by
the Fermi energy: εF . In the field of charge-density waves
(CDW) [13], such quasi-1D Mott insulators are referred
to as 4kF CDWs. This 4kF modulation corresponds to
a space periodicity of the charge-density along the wires,

λ4kF = 2π/4kF , equal to the average distance between
electrons a; such systems therefore display a strongly cor-
related state of the Wigner crystal type. For our purposes,
such systems include man-made atomic or molecular wire
arrays embedded in a semi-conducting matrix [15] and
mono-layers of CDWs [16–18]. For these quasi-1D Mott-
Anderson insulators, where the interplay between disor-
der and interactions is quite non-trivial and out of the
reach of any perturbative scheme, we will naturally [19]
follow the semi-phenomenological route of Mott and Efros
and Shklovskii in deriving the low-T (i.e. T � 1/τel) [21]
transport properties. Our motivation resides in the ex-
isting experimental literature on quasi-1D systems where
VRH laws have been reported quite extensively, e.g. in
polymers [22,23].

Equation (1) corresponds to linear variable-range hop-
ping laws such that the current j is proportional to the
applied electric field E , j = σ(T )E . Upon increasing the
applied electric field, such laws cross-over to non-linear
VRH laws which read:

j(E) ∼ exp[−(E0/E)γ ], (2)

where the exponent γ ≤ 1. In the frame of disordered
semiconductors in high electric fields such laws, with an
exponent γ = 1/4, are known from Mott and Shklovskii. In
quasi-1D systems they are observed, e.g. for bronzes [24].
These laws hold in the low-T limit, T � 1/τel, up to
the threshold field for global sliding of the pinned elec-
tronic structure, see references [25] and [26] for reviews
on pinning. Of course, for the exponential character to
manifest the electric field should not be too high, e.g. in
1D: E � E0 ∝ 1/evF τ

2
el. For a given linear VRH law,

it will however manifest for: E > Ec where the crossover
field reads, in any dimension: Ec = TE0/T0 ∝ T/eξ, where
e is the unit charge and ξ is the localization length. In
summary, we shall focus on the following two regimes: the
linear response regime of equation (1):

T � T0 ≈ 1/τel and E � T/eξ, (3)

and the non-linear response regime of equation (2):

T � T0 ≈ 1/τel and T/eξ � E � E0. (4)

Some of the recent theoretical literature on VRH has been
devoted to 1D and 3D quasi-1D systems in the linear
regime, cf. reference [14]. To the knowledge of the au-
thor a theory of electron transport in 2D quasi-1D systems
has not been developed in either the linear or non-linear
regimes. Our specific task will be to compute the main ex-
ponential dependence of the electron current as a function
of temperature, electric field and impurity concentration.
We will closely follow the arguments of reference [14].

Our results display two characteristic features: a non-
monotonous dependence of the current as a function of
disorder and a highly non-universal exponent γ, i.e. im-
plicitly interaction- and disorder-dependent. Both state-
ments will be proved in the following sections. They are
generic of incommensurate quasi-1D Mott-Anderson insu-
lators and are absent in the usual doped semiconductors
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or even in the other (hypothetical) collective structure of
interest: the pinned Wigner crystal. The reader interested
more in our results than the details of the derivations may
refer directly to Section 7.

The theory will be developed as follows. In Section 2
we describe the 4kF quasi-1D systems in a semi-classical
way, which is justified due to the large parameter rs. This
will unable us to determine the dielectric properties of
the system. With the help of these results and the ES
phenomenology we derive, in Section 3, the single-particle
density of states (DOS) of charge excitations and show
how it is affected by the long-range interaction potential
among charge excitations (Coulomb gap). In Section 4 we
focus on determining the localization length with the help
of microscopic models related to single-impurity tunnel-
ing of the charge excitations. In Sections 5 and 6 the VRH
laws, in the linear and non-linear response regimes, respec-
tively, are derived with the help of the Efros, Mott and
Shklovskii phenomenology and the results of Sections 3
and 4. In Section 7 the conclusion is given.

2 Dielectric properties

In this section we determine the dielectric properties of
disordered 2D quasi-1D systems. The latter will be used
in subsequent sections to determine the VRH laws.

2.1 The model

Following the Introduction, we introduce our basic model
of a strongly pinned 2D quasi-1D system in a 4kF−CDW
state. Along each wire, such a quasi-1D system is charac-
terized by a modulation of the density:

ρ(x) = ρ0 + ρ1 cos(Qx+ ϕ) + (1/2π)∂xϕ,

where ρ0 is the unperturbed density, Q = 4kF is the mod-
ulation of the wave, ϕ is the phase of the (assumed in-
commensurate) CDW and the last term describes long-
distance deformations. In electronic systems, a 4kF mod-
ulation implies that the wavelength of the CDW is of
the order of the average spacing a between electrons. It
is realized in systems where the long-range Coulomb in-
teraction is present, see reference [11] for a review on
such results in the 1D case. In quasi-1D systems, where
the Coulomb interaction may be screened by neighboring
chains, the 4kF−CDW is also detected [17]. This reflects
the large rs nature of such systems. It implies that one may
neglect quantum fluctuations and describe these CDWs
semi-classically with the help of the phase-field ϕ. This
CDW phase, ϕ, is related to the order-parameter describ-
ing the condensate which reads: ∆(r) = |∆| exp[iϕ(r)],
where r is a two-dimensional coordinate, and |∆| the am-
plitude which is assumed to be frozen as we consider low
temperatures. Moreover, the system has charge invariance,
i.e. ϕ→ ϕ+2π, implying the existence of a Fröhlich mode,
i.e. the sliding of the electron crystal, in accordance with
the fact that the system is incommensurate.

We focus first, in the frame of this semi-classical the-
ory, on static properties of the system: the determination
of the structure of the electron system in the presence of
a single strong impurity and of it’s charge excitations as
well as the electrostatic potential between such excitations
[the dynamics will be considered later, i.e. the effect of
quantum fluctuations, when dealing with the tunneling of
these charge carriers through the impurities]. Adding then
a single strong impurity at the origin of the 2D system,
the Hamiltonian consists of three parts:

H = H0 +HD +HI , (5)

where H0 is the elastic part and reads:

H0 =
∫
d2r

Y

2

[
(∂xϕ)2 + α (∂yϕ)2

]
, (6)

where Y = Yx is the bulk-modulus along the chains and
the anisotropy parameter reads: α = Yy/Yx � 1 (x−
is the direction along the wires and y− is the direc-
tion perpendicular to them). In equation (6), the phase
field ϕ may be interpreted as a scalar displacement field
along the wires, ux, as in conventional elasticity theory.
The displacement and phase fields are then related by:
ϕ = −(2π/a)ux. It follows naturally that the first term,
in equation (6), describes the compression energy along
each wire, Y being the bulk modulus and the second term
corresponds to shear elasticity due to inter-wire interac-
tions, Yy being the shear modulus. It should be noticed
that the inter-wire interaction term is defined at the level
of the order parameter with the help of: ∆∗

n∆m + c.c. =
|∆|2 cos(ϕn−ϕm), where n andm index neighboring wires.
Shear elasticity is then derived by expanding the cosine,
at low temperatures, and going to the continuum limit
perpendicular to the wires.

The second term in equation (5) describes the effect of
a strong impurity at the origin and reads:

HD =
∫
d2r [Wf∂xϕδ(r) −Wb cos(ϕ)δ(r)], (7)

where the first term corresponds to the forward scattering
on the impurity (i.e. the coupling of the point-like im-
purity potential to the long-distance part, ∝ ∂xϕ, of the
CDW density) and has a strength Wf . The second term
corresponds to the backscattering on the impurity (i.e. the
coupling of the point-like impurity potential to the oscil-
lating, 4kF , part of the CDW density) with a strength
Wb.

Finally, the third term in equation (5) contains the
long-range Coulomb field and reads:

HI =
∫
d2r

[
Uδ(r) +

1
b2
∂xϕU(r)

]
− 1

8πe2

∫
d3r(∇U)2],

(8)
where U is the Coulomb field. The first term corresponds
to a point-like test charge for the Coulomb field U . The
second to the coupling of the long-range Coulomb poten-
tial to the long-distance part of the density (∝∂xϕ) and
the last term corresponds to the energy of the Coulomb
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field. It should also be noticed that, in the model of equa-
tion (8), the Coulomb interaction is the real one, i.e. the
three-dimensional one.

There is a basic non-trivial length-scale in equation (6)
which is proper to quasi-1D systems and will bring signif-
icant opportunities to go beyond strictly 1D physics all
along this manuscript. This is the length of a 2π−soliton:
ls, and emerges due to the fact that in quasi-1D systems
shear and elasticity are coupled [27]. This can be under-
stood with the help of the following arguments. An impu-
rity will enforce a deformation of the CDW in its vicinity.
In the absence of long-range Coulomb interaction, a defor-
mation δϕ along a distance δx along the defected wire, has
an elastic energy: E = δx b2[Y δϕ2/δx2+Y⊥δϕ2/b2], where
we have assumed that the distance between neighboring
wires is b. Minimizing this elastic energy with respect to
δx and defining the optimal δx as the length ls, we find
that:

ls =
b√
α
. (9)

In the case where δϕ = 2π, the deformation becomes the
plastic one, as a whole period of the density-wave is af-
fected by the impurity. Hence the name of soliton length,
see references [28] and [29] for reviews on soliton physics
in condensed matter. Notice also that for decoupled wires,
i.e. strictly 1D systems where α → 0, ls is infinite. This
implies that the whole wire adjusts to the deformation at
the origin. In the case of 0 < α < 1, inter-wire inter-
actions enforce the same phase [2π] between neighboring
wires, beyond the length ls, on both sides of the impu-
rity. In what follows, the length ls will be used to distin-
guish between the low-impurity concentration limit, where
the average distance between impurities along a wire, l, is
larger than ls, l � ls and the opposite large-impurity con-
centration limit, l � ls (the density of impurities is given
by: N = 1/lb2).

2.2 The case of small impurity concentration

We focus on the low-impurity concentration case,
l = 1/Nb2 � ls (recall that l is the average distance be-
tween impurities along a wire), cf. the one-impurity model
of equation (5):

N � Ns =
1
lsb

=
√
α

b2
. (10)

Each impurity is strong and the backscattering term in
the Hamiltonian describes the pinning of the system at
distances of the order of the average distance between im-
purities, l. On the other hand the forward scattering term
describes softer deformations of the system away from the
impurities [cf. the dipole distortions that we will introduce
below]. We focus on the latter [30] and set: Wb = 0, as-
suming that the system is strongly pinned. By varying the
functional of equation (5) with respect to the phase field
and the Coulomb field, δH/δϕ = 0 and δH/δU = 0 and
going to Fourier space, one gets a system of two Poisson

equations where both fields screen each other:

ϕ(q) =
iqx

q̃2ε2(q)

[
Wf

Y
+

b

rDq

]
, (11a)

U(q) =
2πe2

qε2(q)

[
1 − Wf

Y b

q2x
q̃2

]
, (11b)

where q̃2 = q2x +αq2y, q2 = q2x + q2y and r−1
D = 2πe2/Y b2 ≈

b−1 is the inverse screening length in the metallic phase.
The 2D dielectric constant with the help of which the long-
range Coulomb and elastic fields screen each-other reads:

ε2(q) = κ

[
1 +

q2x
rDqq̃2

]
, (12)

which displays the anisotropic metallic-like (in the sense
of sliding of the collective electron structure) screening
in the quasi-1D system. As can be seen from equations
(11a) and (12), in 2D, the effect of the Coulomb interac-
tion is to shift q̃2 to q̃2ε2(q) = q̃2 + q2x/rDq. This shift
can be included in the bulk modulus and corresponds to
the incompressibility of the crystal as a whole. As we are
interested in physical properties at large distances along
the chains qx � √

αqy or x � y/
√
α, we see that the

Coulomb interaction brings into play the following sector:

q2x � αrDq
3
y y � (αrDx2)1/3, (13)

which plays a dominant role as we show now.
The inverse Fourier transform of equation (11) yields:

ϕ(r) =
−b sgn(x)

6π(
√
αrD|x|)2/3

[
3Γ (

5
3
) − 2Γ (

2
3
,

√
αrD|x|
y3/2

)
]
,

(14a)

U(r) =
e2

κ|x|
[
1 − exp

(
−
√
αrD|x|
y3/2

)]
, (14b)

where Γ (x) and Γ (x, y) are the complete and incomplete
gamma functions, respectively. The phase field of equa-
tion (14a) is an odd function of the coordinate along the
wire and at long distances along the wire, i.e. for y �
(αrDx2)1/3, reads: ϕ(r) ∝−(ls/x)2/3, cf. equation (15a)
below. This implies that, at such distances, the impurity
is surrounded by dipole distortions of length ls. Crucially,
we identify these dipole distortions as the charge excita-
tions of the system.

These charge excitations interact with a Coulomb po-
tential which deviates from the usual 3D one, due to
the anisotropic screening, cf. equation (14b). More gener-
ally, equation (11b) shows that the electrostatic potential
changes sign along the cone: y = ±√

α|x|/(Wf/Y b − 1).
This is related to the dipole nature of the phase deforma-
tions. In particular, outside this cone, the potential reads:
U ∝ −WfrD/r

3, so that charge deformations of the same
sign attract each-other via a dipole potential. On the other
hand, within this cone (which is the sector of validity of
equation (14b)) the potential is repulsive and independent



S. Teber: Variable-range hopping in 2D quasi-1D electronic systems 293

ofWf . This implies that, if they were not bound to the im-
purities (which they actually originate from), such charge
excitations would form domain walls (our arguments have
their roots in Ref. [32]). In the following we return on the
sector within the cone: y < ±√

α|x|/(Wf/Y b− 1), where
the potential is repulsive and equations (14) holds.

We summarize this sub-section by giving the asymp-
totic expressions of equations (14), on one hand close
to the chains, i.e. in the sector of equation (13), y �
(αrDx2)1/3, where it reads:

ϕ(r) = −sgn(x)
(

ls
2π|x|

)2/3

, (15a)

U(r) =
e2

κ|x| , (15b)

and on the other hand further away from the chains, i.e.
y � (αrDx2)1/3, where it reads:

ϕ(r) = −b sgn(x)
2π|y| , (16a)

U(r) =
e2
√
αrD

κy3/2
. (16b)

In the limit of vanishing inter-wire coupling: α → 0, the
sector defined by equation (13) vanishes. This corresponds
effectively to a crossover from a low impurity density
regime, N � Ns = 1/lsb2 =

√
α/b3, to a large impurity

density regime, N � Ns, that we consider next.

2.3 The case of large impurity concentration

Formally, this case, as defined in the previous section, re-
quires that l � ls (recall that l is the average distance
between impurities along a wire) or, in terms of impurity
concentration, that:

N � Ns =
√
α

b2
, (17)

where α gives the dimensionless strength of inter-chain
interactions. Large impurity concentration is therefore
equivalent to vanishing inter-chain couplings. The system
is then equivalent to an ensemble of metallic (in the sense
of sliding) segments along the wires, of average length l.
These segments are decoupled elastically but still coupled
by the long-range Coulomb potential. In the literature,
such a regime is sometimes referred to as a model of inter-
rupted metallic strands [31]. Following the previous para-
graph, our goal here is to determine the dielectric proper-
ties of such a phase.

From equations (11), the electrostatic potential of
a charge carrier at the origin of a pure system
(Wf = Wb = 0) reads:

U(q) =
2πe2

qε2(q)
, (18)

where the dielectric constant is given by equation (12) and
q2 = q2x + q2y. In the previous paragraph we have focused

on the effect of deformations due to the forward scattering
term (Wf ) in a system of dilute strong pinning centers. In-
creasing the impurity concentration we need to take into
account the average effect of these pinning center. This
is done according to the prescription: q̃2 → q̃2 + L−2

x

in equation (12) for the dielectric constant (recall that
q̃2 = q2x + αq2y arises from the elastic part of the energy)
where Lx ∝ l is the pinning length due to the backscat-
tering on the impurity, see references [25] and [26] for re-
views on pinning. This amounts to introduce the effect
of backscattering on the impurity as a commensurability
term explicitly breaking the translational invariance of the
system. The dielectric constant therefore becomes:

ε2(q) = κ

[
1 +

q2x
rDq(q̃2 + L−2

x )

]
. (19)

In the clean limit, Lx ∝ l � ls, we may assume that
Lx/ls → ∞, and recover the results of the previous sub-
section. In the dirty limit, Lx ∝ l � ls, we may assume
that ls/Lx → ∞ so that α → 0 and q̃2 = q2x + αq2y → q2x.
In this regime, the Coulomb potential reads:

U(r) =
2πe2

κ

∫
dq

(2π)2
eiq.r

q + q2
x

rD (q2
x+L−2

x )

. (20)

The asymptotics of equation (20) then read:

U(r) =
e2

κ|x|

(
1 − exp

(
− |x|√

ybκx/κ

))
,

Lx � x� L2
x/2b, y � L2

x/2b, (21a)

U(r) =
e2

κy
, Lx � x� L2

x/2b, y � L2
x/2b, (21b)

U(r) =
e2

κr
, r � L2

x/2b, (21c)

where r =
√
x2 + y2 and κx is the longitudinal (along the

wires) dielectric constant:

κx = κ(Lx/rD)2, (22)

up to a numerical constant of the order of unity, with:
rD ≈ b, where b is the inter-wire distance and the pin-
ning length along the wires: Lx ≈ l, is of the order of
the average impurity-distance, l, along each wire. Notice
that the longitudinal dielectric constant, equation (22),
is inversely proportional to the square of the impurity
concentration in the system, N = 1/lb. This longitudinal
dielectric constant is large, i.e. larger than the dielectric
constant κ of the host in which the 2D system is em-
bedded. This is important and explains the richness of
equations (21). Indeed, equation (21a) shows that close to
the chains (y � l2/2b) and for l � x � l2/2b, field lines
prefer to remain in the 2D layer where they are screened
by the large longitudinal dielectric constant. This sector
is peculiar to the quasi-1D system. At larger distances,
x � l2/2b, the lines escape to the external media where
they are screened only by κ and the potential is fully long-
ranged. This result is derived by other means in the ap-
pendix.
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3 Single-particle density-of-states
and the Coulomb gap

We now turn to the determination of the single-particle
density of states, g(ε), of the localized charge excitation
of energy ε. This density of states is defined as the prob-
ability density for the excitation to have energy ε. In the
case where ε = εi, the corresponding wave function is
given by:

ψi(r) = exp
[
−xi

ξx
− yi

ξy

]
, (23)

where ξx is the longitudinal, i.e. along the wires, localiza-
tion length and ξy is the transverse one. Moreover, xi and
yi locate the position of the localized charge excitation of
energy εi. Notice that, in usual disordered semiconduc-
tors, ψ is the single-particle wave function of the electron
(impurities are hydrogenoid atoms) and the localization
length corresponds to the Bohr radius of this trivial charge
excitation. In quasi-1D systems ψ is the single-particle
wave function of deformations of the electronic system,
the distortions considered in the previous section.

An ensemble of such localized states with a density
g(ε), forms a disorder or impurity band. Moreover, keeping
in mind that the system is a Mott insulator, the localized
states of energy ε belong the lowest Hubbard band of the
system. It is on this lowest “Hubbard impurity-band” that
we shall focus now, keeping in mind that the upper one,
distant by the Hubbard: UH ∼ e2/κa, is unreachable at
the low energies we consider: T � UH .

We further assume that this lowest Hubbard impurity
band is partially filled. As a result, the low-T transport we
consider is the hopping of charge excitations within this
lowest Hubbard impurity band. One may formally define
a Fermi energy for this band of localized states (εF ≡ 0)
and a non-zero DOS of charge excitation at this Fermi
level: ν ≡ g(0) �= 0. As far as transport is concerned, we
shall show below that the non-zero ν, i.e. the existence
of gapless charge excitations, implies that there is a low-
temperature hopping conductivity of the variable-range
type.

In the absence of the long-range Coulomb g(ε) is con-
stant, i.e. g(ε) ≈ ν, within the disorder band width. We
now turn on the long-range Coulomb interaction and fol-
low Efros and Shklovskii to determine the influence of this
interaction on g(ε). We provide here some details for the
reader which is not familiar with the ES arguments. While
hopping from the localized state i of energy εi below the
effective Fermi energy of the impurity-band to the state j
of energy εj above, the energy of the charge excitation will
vary by: δE = εj − e2/κrij − εi. In the latter expression,
the long-range Coulomb interaction −e2/κrij between the
charge excitation at j and the hole it has left at i has
been taken into account. By construction: δE ≥ 0, which
implies a depletion of states around the Fermi energy:
rij ≥ e2/κ|εj −εi|, because of the long-range nature of the
Coulomb interaction. In d dimensions, such states have a
spatial density of n = 1/rd, where r ≡ rij . This implies
that: n(ε) ≤ (κ|ε|/e2)d, where ε ≡ εj−εi. The correspond-
ing single-particle density of states (g(ε) = dn(ε)/dε) then

reads:
g(ε) = C

( κ
e2

)d

|ε|d−1, (24)

where C is a numerical coefficient of the order of unity, de-
pending on the dimensionality of the system [10], e.g. see
reference [33] for the 2D case we are interested in. A crucial
feature of equation (24) is that the DOS vanishes only at
the Fermi energy. Hence, there is still no Coulomb block-
ade within the impurity band because of the long-range
Coulomb. There is however a soft Coulomb-gap which af-
fects the transport as will be shown below. Moreover, the
Coulomb gap of equation (24) depends on dimensional-
ity [10]: quadratic in the energy of the charge excitation
in 3D (∝ ε2) and linear in 2D (∝ |ε|), and not on the
impurity concentration. The situation is much richer in
quasi-1D systems due to their non-trivial dielectric prop-
erties.

3.1 The case of large impurity concentration

We apply the Efros-Shklovskii arguments to the case of the
anisotropic Coulomb interaction characteristic of quasi-
1D systems starting with the large-impurity concentration
regime: N � Ns. The Coulomb interaction is given by
equations (21). For each sector we fix the potential U = ε,
determine the equipotentials x(ε) and y(ε) and substitute
them in the density, n(ε) in order to derive the Coulomb
gap:

n(ε) =
1

x(ε)y(ε)
, g(ε) =

dn(ε)
dε

.

We first focus on the large-distance sector of equa-
tion (21c). At such distances, x � l2/2b, the poten-
tial is isotropic. Therefore the usual ES arguments apply,
x(ε) = y(ε) = e2/κε and n(ε) = κ2ε2/e4. The Coulomb
gap is therefore linear in the energy of the charge excita-
tion:

gES(ε) = C0
κ2

e4
|ε|, ε� ε1, (25)

where C0 is a numerical coefficient of the order of unity,
ε1 is a crossover to another Coulomb-gap shape (as ex-
plained shortly). As in the usual ES law, equation (25) is
independent on the impurity concentration (C0 and κ are
constants).

We then focus on the shorter-distance sector of equa-
tion (21a). At such distances, l � x � l2/2b and y �
l2/2b (recall that Lx ∝ l), the potential reads:

U(r) =
e2

κx
, y � x2κ

bκx
, (26a)

U(r) =
e2

κ
√
ybκx/κ

, y � x2κ

bκx
. (26b)

which follows from equation (21a). Close to the chains,
y � x2κ/bκx, and fixing U ≡ ε yields the following
equipotentials: x(ε) = e2/κε and y(ε) = x(ε)2κ/aκx. This
yields a density of localized states:

n(ε) =
bκ2κxε

3

e6
,
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g(ε)

ν

0

0 ε1 ∆1 ε

Fig. 2. Schematic plot of the DOS of charge excitations of the
2D anisotropic systemwith a large concentration of impurities,
N � Ns. The linear Coulomb-gap at low energies (Eq. (25)) is
succeeded by the quadratic Coulomb-gap (Eq. (27)) and finally
by the constant DOS of the disorder band, ν.

and therefore the Coulomb gap:

g1(ε) = C1
bκ2κxε

2

e6
, ε1 � ε� ∆1, (27)

where C1 is a numerical coefficient of the order of unity.
This Coulomb gap is quadratic for a 2D system and de-
pends on disorder through κx, cf. equation (22). Both fea-
tures are unusual with respect to known results, cf. equa-
tion (24). In equation (27),∆1 is the width of the Coulomb
gap and ε1 a crossover energy from equation (25) to equa-
tion (27). The upper-bound ∆1 to the energy-dependence
of equation (27) originates from the fact that this Coulomb
gap is due to the short-distance part of the Coulomb po-
tential equation (21a). At shorter-distances, hence higher
energies, equation (27) crosses-over to the constant DOS,
ν, of the disorder band. Equating g1(∆1) to ν yields:

∆1 = D1

[
e6ν/bκ2κx

]1/2
, (28)

where D1 is a numerical coefficient of the order of unity.
equation (28) corresponds to the Coulomb-gap width
in the large impurity regime. On the other hand, the
crossover energy ε1 is obtained by equating gES(ε1) to
g1(ε1) which, from equations (25) and (27), yields:

ε1 = N1
e2

bκx
, (29)

where N1 is a numerical coefficient of the order of
unity. Notice that both equations (28) and (29) have an
impurity-dependence through the longitudinal dielectric
constant κx which is given by equation (22). In the large
impurity concentration case, the total Coulomb gap shape
is plotted in Figure 2.

3.2 The case of small impurity concentration

We turn on to the small-impurity concentration case:
N � Ns. The ES Coulomb gaps found in the case of
large impurity concentration, N � Ns, are still valid in
the present case. Hence, at distances x larger than l2/2b,

g(ε)

ν

0

0 ε1 ε2 ∆2 ε

Fig. 3. Schematic plot of the DOS of the 2D anisotropic
system with a small concentration of impurities, N � Ns.
The linear Coulomb-gap at low energies (Eq. (25)) is suc-
ceeded by the quadratic Coulomb-gap (Eq. (27)), then by the
“2/3-”Coulomb-gap (Eq. (31)) and finally by the constant DOS
of the disorder band, ν.

interactions open a linear Coulomb gap similar to the one
of equation (25). At smaller distances: l � x � l2/2b,
corresponding to larger energies, this linear Coulomb gap
crosses over, at ε1, to the quadratic one defined by equa-
tion (27). Going to higher energies corresponds to dis-
tances shorter than the pinning length, Lx ∝ l. If impuri-
ties are sufficiently diluted, i.e. l is large, we may face the
situation where a charge excitation experiences the poten-
tial within the pinning area LxLy =

√
αl2, i.e. the poten-

tial of the equivalent pure system given by equations (15b)
and (16b):

U(r) =
e2

κ|x| , y � [x2αrD]1/3 (30a)

U(r) =
e2

κ

[
αrD
|y|3

]1/2

, y � [x2αrD]1/3. (30b)

Close to the chains, y � [x2αrD]1/3, and fixing U ≡ ε
yields the following equipotentials: x(ε) = e2/κε and
y(ε) = [x2(ε)αrD ]1/3. This yields a density of localized
states:

n(ε) =
1

(αrD)1/3

(κε
e2

)5/3

,

and therefore the Coulomb gap:

g2(ε) = C2
ε2/3

(αrD)1/3(e2/κ)5/3
, ε2 � ε� ∆2, (31)

where C2 is a numerical coefficient of the order of unity. In
equation (31), the new crossover energy, ε2, defined as the
crossover energy between the quadratic and 2/3−Coulomb
gaps [g1(ε2) = g2(ε2)] reads:

ε2 = N2
e2

κb

[
1
α

(κx

κ

)3
]1/4

, (32)

where N2 is a numerical coefficient of the order of unity.
Finally, ∆2 corresponds to the Coulomb-gap width in the
small-impurity concentration case [g2(∆2) = ν] and reads:

∆2 = D2

[
(e2/κ)5ν3αrD

]1/2
, (33)
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where D2 is a numerical coefficient of the order of unity.
These results are summarized in Figure 3 which displays
the total DOS of the system in the small impurity concen-
tration regime.

4 Localization length and tunneling

We now focus on the localization length associated with
the single-particle wave function of equation (23). The
transverse localization length is given by: ξy < b, where b
is the inter-chain distance. In the following we focus on ξx.
As we have already said at the level of equation (23), in
the case of doped semiconductors, the charge excitations
are simply the electrons and the corresponding localiza-
tion length is the Bohr radius of the hydrogenoid wave
function. The later has no impurity dependence. On the
other hand, the situation is much less trivial for quasi-
1D systems, where excitations are non-linear deformations
of the electronic system. These excitations are extended
and one may think that they are localized over the length
ξx = ls along the wires, in the clean limit (l � ls) and
over the distance ξx = l between impurities in the dirty
limit (l � ls). This intuitive argument is correct but it
turns out that the Föhlich mode as well as the long-range
Coulomb interaction also influence, in a non-trivial way,
this length, as we show now. The reader which does not
wish to go through our microscopic arguments, at least
on the first reading, may skip to the next section, where
transport laws are derived and it is shown how the local-
ization lengths enter expressions for the conductivity and
current.

4.1 The model

It is crucial to notice that the localization length is of
purely quantum origin, contrary to the pinning length
(Fukuyama-Lee length or Larkin length depending on
the context) which is defined at the classical level. The
derivation of the localization length requires to consider
the tunneling of the charge excitations through impu-
rities. The most convenient way of dealing which such
processes, which are forbidden at the classical level, is
to extend the semi-classical approach of previous sec-
tions to the Euclidean space by using imaginary time
dynamics. In doing so, we consider the tunneling of a
charge excitation along the distance x of a given wire.
The average distance between impurities along this wire
is l. Hence, the charge has to tunnel through x/l impu-
rities. Neglecting interferences between these impurities,
their effect, as a first approximation, is additive. The to-
tal action for tunneling along the distance x is there-
fore given by: Sopt(x) = soptx/l, where sopt is the ac-
tion to tunnel through a single impurity. The total action
Sopt enters the quantum probability to reach the distant
point x: |ψ(x)|2 ∼ exp(−Sopt(x)), where ψ is the one-
(quasi-)particle wave function of equation (23). Therefore:
x/ξx ≡ Sopt = soptx/l and the localization length reads:

ξx = l/sopt, l � ls. (34)

This result is valid for the large impurity concentra-
tion case. When the concentration of impurity is small
charge excitations acquire the length ls and the localiza-
tion length becomes:

ξx = ls/sopt, l � ls. (35)

In our approximation of neglecting interferences between
various impurities, which is reasonable in the strong or
individual pinning regime we consider, the localization
length depends only on a one-impurity tunneling action.
Subsequent calculations will therefore focus on a deriva-
tion of this one-impurity optimal action sopt.

The basic action that we shall consider reads:

s =
∫ β

0

dτ

∫
dr

{
C

2
(∂τϕ)2 +

Y

2

[
(∂xϕ)2 + α (∂⊥ϕ)2

]

−Wb cos(ϕ)δ(r)

}
, (36)

where now ϕ ≡ ϕ(τ, r), C is the CDW stiffness, the last
term corresponds to the backscattering on the impurity
and � = 1 unless specified explicitly. At this point we
came up to a systematic way of deriving the localization
length with the help of equations (34), (35) and the well-
defined model of equation (36). Unfortunately, it is not
possible to determine analytically the exact non-trivial
time-dependent solutions (instantons) of the above non-
linear partial differential equation. The physical process
of tunneling may however be understood as a two-stage
process [34]. The first stage (small times) corresponds to
the local tunneling of the CDW at the impurity position
by one period, a. This stage is described by the backscat-
tering term which is local in space. We now assume that
the non-trivial dynamics of the phase at the impurity are
essential only at large times (large and small times will be
defined below). As a result the jump of the phase, at the
impurity, during the first stage is described by the Ansatz:
ϕ(τ) = 2πθ(τ), where θ(τ) is the Heaviside function. The
action describing the first stage is then linear in time and
in the impurity strength:

s1 = Wbβ. (37)

The second stage (large times), corresponds to the adjust-
ment of the crystal, at large distances from the impurity,
to the jump of the phase at the impurity. It is described by
assuming that the local effect of the impurity is irrelevant,
i.e. that one can set Wb = 0. Then, the corresponding ef-
fective action may be derived from equation (36) (with
Wb = 0) by tracing out all remaining gapless modes away
from the impurity position. This leads to an effective ac-
tion for the phase at the impurity:

s2 =
1
2β

∑
ω

|ϕω|2Jω, (38)

where the spectral function Jω contains the effect of the
infinite number of gapless modes which have been traced
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out. Without the Coulomb interaction this spectral func-
tion reads:

J−1
ω =

∫
dq

(2π)2
1

Cω2 + Y q̃2
. (39)

where q̃2 = q2x + αq2y .

4.2 The case of large impurity concentration

In this case wires are elastically weakly coupled, α → 0.
This case is worth examining first because it relates our
approach to known results in the literature on 1D disor-
dered interacting systems. equation (39) leads to Jω =
4πb

√
Y C|ω| and therefore to an action of equation (38)

which is non-local in time:

s2 =
∫
dτdτ ′

(
ϕ(τ) − ϕ(τ ′)

τ − τ ′

)2

,

and is similar to the one of Caldeira and Leggett in the
frame of quantum dissipation. This terminology might be
misleading here, as the dissipation arising in the effective
action is not related to an external bath coupled to the
system (phonons). It is intrinsically related to the incom-
mensurate CDW, i.e. the action is that of generic gapless
modes. It may be understood by thinking about the CDW
away from the impurity as an effective (internal) bath gov-
erning the dynamics of the phase at the impurity. Tracing
out the internal degrees of freedom away from the impu-
rity, while keeping the phase at the impurity fixed, leads to
non-trivial dynamics for the latter. This procedure is well-
known in 1D disordered systems, cf. references [5,35,36],
the first extension to quasi-1D systems appearing in ref-
erence [26]. Because the phase is bounded along the time
trajectory, i.e. ∆ϕ = 2π, this part of the action is loga-
rithmic in time:

s2 = b
√
Y C ln(l/uβ), (40)

where u =
√
Y/C is the velocity of the collective electron

structure and l/u an upper-time cut-off preventing the
divergency of the action.

With the help of equations (37) and (40), minimizing
the total action s = s1 + s2 with respect to β, the optimal
time reads:

βopt = b
√
Y C/Wb, (41)

and the optimal action reads:

sopt = b
√
Y C ln(lWb/bY ). (42)

In equation (42), we have assumed that the logarithm
gives the major contribution with respect to unity. This
is effectively the case, as the inequality: Wbl/b � Y , is
equivalent to the requirement that we are in the strong
pinning regime. The latter also implies that the impurity
strength and bulk modulus are determined by local elec-
trostatics:Wb ∼ e2/κb and Y ∼ e2/κb, as may be check by
dimensional arguments. The arguments of the logarithm
therefore corresponds to: Wbl/bY = l/b� 1.

The second check deals with our initial assumption
that at small times, the non-trivial dynamics of the phase
at the impurity position are irrelevant. We may check
that this is the case for an infinite, delta-function-like,
back-scatterer (Wb → ∞). In this case, the tunneling
is instantaneous and the phase effectively jumps by 2π,
i.e. by one period at the impurity position. The Ansatz:
ϕ(τ) = 2πθ(τ), where θ(τ) is the Heaviside function, is
then perfectly justified. This is also the case if the opti-
mal time is smaller or equal to the smallest time-scale of
the problem: βopt ≤ a/u. Using again the fact that the
plasmon velocity is related to our parameters with the
help of: u =

√
Y/C, this condition reads: Wb ≥ Y b/a.

The lower boundary is satisfied in the case of strong in-
dividual pinning, Wb ∼ Y ∼ e2/κb, for sufficiently dilute
electronic systems (hence large rs, see below).

Finally, we notice that the phase-phase correlation
function in the absence of disorder scales as: < ϕ2 >=
�/b

√
Y C (where � has been restored for clarity). The

weakness of quantum fluctuations, on which our starting
semi-classical approach was based, implies that: b

√
Y C �

�. This condition fulfills the requirement that, in equa-
tion (42), the optimal action, sopt � 1. Because u =√
Y/C, and using again the fact that: Y ∼ e2/κb, we

see also that: b
√
Y C/� = e2/κ/�u = UH/εF , where

UH = e2/κa is the Coulomb energy scale and εF = �u/a is
the kinetic energy scale (a is the average distance between
electrons along a wire). We may therefore introduce the
well-known parameter rs which is defined as:

rs ≡ UH

εF
= b

√
Y C/� � 1. (43)

It follows from equation (43), that the optimal action of
equation (42), may be re-expressed as:

sopt = rs ln(l/b), (44)

where we have used the fact that Wb ∼ Y and returned �

to unity. It is crucial to notice that this action is non-WKB
like because the strength of the barrier, Wb, is in the log-
arithm, as known from Larkin and Lee in the strictly 1D
case [34]. The difference with the 1D case here is that the
inter-chain distance, b, appears in the logarithm instead
of the average electron distance, a, in 1D. From equa-
tions (34) and (44), this yields the localization length in
the large impurity concentration case:

ξx =
1

rsbN ln(1/Nb2)
, N � Ns, (45)

where N = 1/lb has been used.
We include now the long-range Coulomb. Following

equation (12) and the discussion below it, the inclusion
of the Coulomb interaction amounts to replace: q̃2 = q2x +
αq2y → q2x by q̃2ε2(q) = q̃2+q2x/rDq → q2x[1+1/rDq], where
q2 = q2x+q2y. Because qrD � 1 and at large distances along
the chains, qx � qy, this reduces to the non-analytic shift:
q̃2 → q2x/rD|qy| in equation (39), which reads:

J−1
ω =

∫
dq

(2π)2
1

Cω2 + Y q2x/rD|qy| .
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It is straightforward to show that the integration yields:
Jω = 3πb

√
Y C|ω|, which is the above result up to a nu-

merical factor. In 2D and in the large impurity concentra-
tion case, the Coulomb interaction does not modify the
result of equation (45).

The case where N � Ns requires stronger inter-wire
couplings and will be considered next.

4.3 The case of small impurity concentration

In the small-impurity concentration case the inter-wire
coupling is crucial, i.e. it gives rise to the non-trivial scale
ls. For coupled wires, we are only aware of the results of
reference [26] dealing with the equivalent 3D geometry.
In our 2D case, including inter-chain interactions, and fo-
cusing on large-distances along the chains, qx � √

αqy,
equation (39) reads:

J−1
ω =

∫
dq

(2π)2
1

Cω2 + αY q2y
.

This yields:

Jω =
Es

ln(Es/b
√
Y C|ω|) , (46)

where Es ∝ e2/κls is the soliton energy. The total action,
s = s1 + s2, in the logarithmic approximation, therefore
reads:

s = Wbβ +
Esβ

ln(Esβ/b
√
Y C)

.

The logarithmic factor provides a minimum to the action
which, in the strong pinning regime, Wb � Es, is then
given by:

sopt = b
√
Y C

Wb

Es
= rs

Wb

Es
, (47)

where equation (43) has been used.
Next, we include the effect of the Coulomb interaction

shifting q̃2 to q̃2ε2(q) = q̃2 + q2x/rDq, cf. equation (12)
and the discussion following it. At large distances along
the chains, qx � √

αqy, the shift reduces to q̃2 → αq2y +
q2x/rD|qy|. The kernel of equation (39) then reads:

J−1
ω =

∫
dq

(2π)2
1

Cω2 + αY q2y + Y q2x/rD|qy| .

The integrations yield:

Jω =
Es

1 − (b
√
Y C|ω|/Es)1/2

. (48)

equation (48) shows that, in the presence of the Coulomb
interaction, the dynamics enter the kernel in a perturba-
tive way with respect to the static part Es. This was not
the case in 1D as well as in 2D without the long-range

Coulomb interaction, cf. the logarithmic factor in equa-
tion (46). The expansion of the kernel, up to second order,
leads to the following total action:

s = Wbβ + [bEs

√
Y Cβ]1/2 + b

√
Y C ln(ls/uβ),

where our cut-off is now ls. The optimal time is found to
be:

βopt =
b
√
Y C

Wb
. (49)

which leads to the following optimal action:

sopt = b
√
Y C + b

√
Y C

(
Es

Wb

)1/2

+ b
√
Y C ln

(
lsWb

bY

)
.

In the strong pinning regime, Wb ∼ Y , and with ls � b,
the action is dominated by the logarithmic contribution
which, up to a numerical factor, reads:

sopt = rs ln(ls/b). (50)

where equation (43) has been used as well as the strong
pinning result: Wb ∼ Y . The long-range Coulomb there-
fore returns us to the logarithmic action which is non
WKB-like.

From equations (35) and (50), the localization length
in the small impurity concentration case reads:

ξx =
1

rsbNs ln(1/Nsb2)
, N � Ns, (51)

where N = 1/lb has been used (Ns = 1/lsb).

4.3.1 General expression and remark

Equations (45) and (51) yield the general expression for
the localization length:

ξ−1
x = rs b max{N,Ns} ln

(
1

max{N,Ns}b2
)
, (52)

which we will use in the following section.
As a final note, we follow reference [26], where it has

been mentioned that the collective dynamics of the CDW
may include a contribution from the amplitude, |∆(τ)|.
This contribution arises because the order parameter is
complex: ∆(r, t) = |∆| exp(iϕ). At zero temperature the
amplitude mode is frozen but in VRH we may be inter-
ested in reaching the thermally activated regime. In this
case, there is an additional regular kinetic energy contri-
bution ∝Iω2, where the momentum of inertia I depends
on fluctuations of the amplitude. This brings an addi-
tional contribution to the total action of equation (50):
∝I/β. Equation (50) would then be valid provided that:
I � b2Y C/Wb. In the other case, I � b2Y C/Wb, the final
action reads:

sopt = 2
√
IWb + b

√
Y C ln

(
L
√
Wb

u
√
I

)
, (53)
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where the second term is a correction and L = min{l, ls}.
Notice that the first term, with a square-root dependence
on the barrier, is WKB-like. In the following, we will as-
sume that the amplitude mode has a negligeable contri-
bution and we will use the final expression for the local-
ization length, equation (52), based on the non WKB-like
actions. Depending on the system under consideration the
WKB contribution may however play a significant role.
One would then have to use equation (53) together with
equations (34) and (35) to derive the localization length.

5 Linear VRH laws

This section deals with the hopping laws of the quasi-1D
Mott-Anderson insulators in the linear response regime.
Our results depend crucially on the Coulomb gap shapes
derived in Section 3 and on the impurity-dependence of
the longitudinal localization length derived in Section 4.
Notice that all transport laws below, and especially the
parameter characteristic of these laws, are given up to a
numerical coefficient of the order of unity.

Recall that the semi-phenomenological arguments ini-
tially introduced by Mott in order to derive the dc con-
ductivity, σ(T ), are based on minimizing (with respect to
the coordinates x and y) the toy-action:

S = 2x/ξx + 2y/ξy + Γ/T, (54)

where the quantum and classical parts are related by
a Fermi’s Golden rule involving the density of localized
states:

νΓS ≈ 1, (55)

where S = xy is the area. Equations (54) and (55) de-
scribe the process with the help of which an electron may
hop from a site i to the site j within a disorder band
with a constant density of localized states, ν. The first
two terms in equation (54) represent the overlap between
the two states separated by x and y. Because the system
is disordered the energies of these states are different and
a phonon has to be involved in the process of hopping.
The thermal energy, Γ , is then determined with the help
of equation (55) and corresponds to the average energy
spacing between the localized states involved in the hop-
ping: Γ = 1/νS = 1/νxy. Introducing this value of Γ in
equation (54) and minimizing the total action with respect
to x and y yields the optimal hopping distances:

xopt = ξx (TM/T )1/3, yopt = ξy (TM/T )1/3,

where the parameter TM reads:

TM = 1/νξxξy. (56)

This yields an optimal action: Sopt ∝ (TM/T )1/3. The
corresponding d.c. conductivity, σ ∝ exp(−Sopt), is the
Mott law for variable-range hopping and reads:

σM (T ) = σ0(T ) exp[−(TM/T )1/3], (57)

where σ0 is a temperature-dependent pre-factor (the
temperature-dependence arising from the phonon-
scattering time which is a power-law). This law may be
straightforwardly extended to any dimension. It may
have a disorder-dependence through the constant DOS of
the disorder band, ν:

ν ∝ N

e2/κl
=

κ

e2b
, N � Ns, (58a)

ν ∝ N

e2/κls
=

κ

e2b

N

Ns
, N � Ns. (58b)

This estimate was derived on the basis that we have N lo-
calized states per unit volume, each with an energy e2/κl
in the limit N � Ns (charge excitations extend over
segments between impurities, l) and e2/κls in the limit
N � Ns (charge excitations have their length-scale, ls).
This shows that ν grows with N in the small impurity
concentration case and saturates when N becomes larger
than Ns. An additional dependence may come from ξx. In
particular from equations (56) and (52), the parameter of
the Mott-law for 2D quasi-1D systems reads:

TM =
rsbN ln(1/Nb2)

νξy
, N � Ns, (59a)

TM =
rsbNs ln(1/Nsb

2)
νξy

, N � Ns, (59b)

where N = 1/lb is the impurity-density, b the inter-wire
distance and Ns has been defined by equations (10) and
(17). It is interesting to notice, from equation (59a), that
in the large impurity concentration case there is a lin-
ear dependence on N arising from ξx (ν is constant from
equation (58a)). On the other hand, in the small impu-
rity concentration case, equation (59b), ξx saturates and
we have TM ∼ 1/N from the N−dependence of ν, equa-
tion (58b). In this case, the conductivity increases with
increasing disorder.

When the long-range Coulomb interaction is taken into
account, the latter leads to a depletion of low-energy states
in ν. As we have seen in Section 3, this depletion corre-
sponds to a soft Coulomb gap g(ε) in ν. Following Efros
and Shklovskii, in the presence of this Coulomb gap, one
has to replace equation (55) by:

g(Γ )ΓS ≈ 1. (60)

With the help of equation (25), corresponding to a usual
ES Coulomb gap shape, and the arguments above, the d.c.
conductivity is the Efros-Shklovskii law for VRH:

σES(T ) = σ0(T ) exp[−(TES/T )1/2], (61)

where the parameter TES depends on the specific Coulomb
interaction among charge carriers:

TES =
e2

κ
√
ξxξy

. (62)
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Substituting the expression of the localization length,
equation (52), this parameter reads:

TES =
e2

κ

√
rsNb ln(1/Nb2)

ξy
, N � Ns, (63a)

TES =
e2

κ

√
rsNsb ln(1/Nsb2)

ξy
, N � Ns. (63b)

In the large impurity concentration case, N � Ns, this
parameter increases with the impurity concentration, N ,
which leads to a decreasing conductivity as a function of
disorder. This impurity-dependence originates from ξx. In
the small impurity concentration case, N � Ns, ξx satu-
rates and TES, as well as the corresponding conductivity,
become disorder-independent.

At higher energies, the usual Coulomb gap of equa-
tion (25) crosses over to the unusual Coulomb gap of equa-
tion (27). The latter yields a conductivity that we denote
as: σ1, and reads:

σ1(T ) = σ0(T ) exp
[
−(T1/T )3/5

]
. (64)

The unusual exponent, i.e. 3/5 instead of 1/2, is related to
the unusual Coulomb gap of equation (27). Furthermore,
the parameter T1 reads:

T1 =
e2

(bκ2κxξxξy)1/3
. (65)

Substituting the expression of ξx, equation (52), and of
κx, equation (22), yields:

T1 =
e2

κb
Nb2

[
rsb ln(1/Nb2)

ξy

]1/3

, N � Ns, (66a)

T1 =
e2b

κ

[
rsbN

2Ns ln(1/Nsb
2)

ξy

]1/3

, N � Ns. (66b)

The T1 parameter depends on disorder through both ξx
and κx, in the large-impurity concentration regime. On
the other hand, ξx saturates in the small impurity concen-
tration case and the disorder dependence of T1 originates
then only from κx. In both cases this disorder-dependence
of T1 yields a conductivity, σ1, which decreases with in-
creasing disorder.

We then focus on the peculiar 2/3 Coulomb-gap sec-
tor in the small impurity case, cf. equation (31). This
Coulomb-gap yields:

σ2(T ) = σ0(T ) exp[−(T2/T )5/11], N � Ns. (67)

The unusual exponent, i.e. 5/11 instead of 1/2, is again
related to the unusual Coulomb gap (here ∝ ε2/3) of equa-
tion (31). Furthermore, the parameter T2 reads:

T2 = e2
[
αrD
ξ3x ξ

3
y

]1/5

, N � Ns. (68)

1/2

3/5

3/5

1/2

5/11

T

0

Ts

α5/4Ts

Mott

Activated

1/Ns 1/N

Fig. 4. The generic phase diagram of a 2D quasi-1D system as
a function of temperature T and the inverse average impurity
concentration 1/N [Ts ∝ Es the soliton energy]. This phase
diagram displays the VRH laws with exponents 1/2, 3/5 and
5/11 as well as Mott law and activation at higher temperatures.

Substituting the expression for ξx, equation (52), this pa-
rameter reads:

T2 = e2
[
αr3sb

4N3
s ln3(1/Nsb

2)
ξ3y

]1/5

, N � Ns. (69)

This parameter, as well as the corresponding conductivity,
σ2, are disorder-independent.

Finally, at high energies (within the constant DOS
ν), these VRH laws cross-over to the so called nearest-
neighbor hopping (NNH) or activated law, see reference [9]
for a review. The latter reads:

σNNH(T ) = σ0(T ) exp[−ENNH/T ], (70)

where the NNH energy reads:

ENNH = e2bN/κ, N � Ns, (71a)
ENNH = e2bNs/κ, N � Ns. (71b)

These results are summarized on the temperature −
impurity-concentration phase-diagram of Figure 4. The
crossover lines between the different laws in Figure 4 are
determined with the help of the following arguments.

The expression of ε1, equation (29), determines the
crossover temperature lines T1(N) between the ES and
the 3/5−laws [ε1 = Tc1(TES/Tc1)1/2] with TES given by
equation (63). This crossover line reads

Tc1 =
e2

κb
(Nb2)7/2

√
ξy

rsb log( 1
Nb2 )

, N � Ns, (72a)

Tc1 =
e2

κb2
(Nb2)4

√
ξy

rsbNs log( 1
Nsb2 )

, N � Ns. (72b)

In the case of large impurity concentration, the expres-
sion of ∆1, equation (28) determines the total width of
the Coulomb gap and depends on the constant DOS ν.
This width determines the high temperature crossover line
Tc2(N), [∆1 = Tc2(T1/Tc2)3/5], between the 3/5-law and
nearest-neighbor-hopping, cf. equation (71a), forN � Ns.



S. Teber: Variable-range hopping in 2D quasi-1D electronic systems 301

With the help of equation (64), Tc2(N) reads:

Tc2(N) =
e2

κb
Nb2

[
e2νb

κ

]5/4
√

ξy
rsb ln(1/Nb2)

,

N � Ns. (73)

Using the estimation for ν, equation (58a), equation (73)
may be re-expressed as:

Tc2(N) =
e2

κb
Nb2

√
ξy

rsb ln(1/Nb2)
, N � Ns. (74)

From equations (72a) and (73), we see that:
Tc2(N)/Tc1(N) = 1/(b2N)5/2 � 1, so that at the
boundary N ∼ Ns, the corresponding crossover temper-
atures are separated by the large dimensionless factor
(ls/b)5/2 = 1/α5/4. Moreover, we define Ts ≡ Tc2(Ns)
which reads, up to a logarithmic factor:

Ts ≡ Tc2(Ns) ∝ Es, (75)

where: Es = e2/κls, is the creation energy of a soliton.
With these notations we have:

Tc1(Ns) ∝ α5/4Ts � Ts. (76)

We could also show that in this large impurity concen-
tration case there is no room for the Mott law of equa-
tion (59a), i.e. the crossover line from the 3/5-law to the
Mott law coincides with the crossover line from the Mott
law to the activated- or NNH- law.

In the small impurity concentration case we have
already given the expression for the T1-line in equa-
tion (72b), which matches smoothly equation (72a) at
N ∼ Ns. On the other hand, the T2-line splits into three
crossover lines thereby opening two sectors for the new
5/11-law and the Mott law. The energy ε2, equation (32),
determines the temperature crossover-line: T a

c2(N), [ε2 =
Tc2(T1/Tc2)3/5], between the 3/5-law and the 5/11-laws
for N � Ns. With the help of equation (66b) for the pa-
rameter T1 and equation (32), T a

c2(N) reads:

T a
c2(N) =

e2

κls

[
N

Ns

]11/4
√

ξy
rsb log(1/Nsb2)

, N � Ns.

(77)
which matches smoothly equation (74) at N ∼ Ns and
decreases more abruptly with 1/N for N � Ns.

At the next crossover-line: T b
c2(N), the 5/11−law

crosses over to the Mott VRH law with the parameter
equation (59b). This crossover-line reads:

T b
c2(N) =

e2

κls

[
N

Ns

]5/2
√

ξy
rsb log(1/Nsb2)

, N � Ns,

(78)
which matches smoothly equations (74) and (77) at
N ∼ Ns. Finally, at higher temperatures a crossover-line

bridges the Mott law of equation (59b) with the NNH law
of equation (71b):

T c
c2(N) =

e2

κls

[
N

Ns

]1/2
√

ξy
rsb log(1/Nsb2)

, N � Ns,

(79)
which matches smoothly equations (74), (77) and (78) at
N ∼ Ns.

6 Non-linear VRH laws

This section deals with the hopping laws of the quasi-
1D Mott-Anderson insulators in the non-linear response
regime. Our results depend crucially on the Coulomb
gap shapes derived in Section 3 and on the impurity-
dependence of the longitudinal localization length derived
in Section 4. Our arguments follow closely those of the
linear-response regime of Section 5. Notice that all trans-
port laws below, and especially the parameter character-
istic of these laws, are given up to a numerical coefficient
of the order of unity. Notice also that our present argu-
ments do not allow us to determine the pre-factor of the
current; we therefore focus only on its main exponential
dependence.

The VRH laws derived in Section 5 are valid in the
linear response (or ohmic) regime where the current is
linear in the applied electric field, j = σ(T )E . At a given
temperature, upon increasing the electric field, a crossover
should take place, below the threshold for the sliding of
the electronic crystal, to a non-linear regime. In the frame
of doped semiconductors, such a transition has been stud-
ied in reference [37] by extending the Mott argument pre-
sented in the previous subsection on the linear VRH laws.
Such an extension amounts to replace, in Fermi’s Golden
rule of equation (55), the hopping energy Γ by the energy
provided by the electric field, eEr, during the motion of an
electron along a distance r from the initial localized state.
In d dimensions, the optimal hopping distance is therefore
given by: ropt = 1/(νeE)1/1+d. Substituting this value in
the tunneling probability ∝exp(−2r/ξ) yields:

jMS(E) ∼ exp

[
−

(EMS

E
) 1

1+d

]
, EMS =

1
νeξ1+d

. (80)

where the index MS refers to Mott-Shklovskii, see also
reference [38]. The crossover between the linear and
non-linear regimes takes place when: (EMS/E)1/1+d =
(TM/T )1/1+d, where the parameter of the Mott law:
TM = 1/νξd, in d-dimensions. At a given temperature,
the threshold field for the non-ohmic regime is given by:
Ec = (EM/TM)T , that is:

Ec =
T

eξ
, (81)

in all dimensions. This returns us to the arguments of the
Introduction, see equation (4) and discussion around it.
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It is straightforward to generalize such results in the
presence of a Coulomb gap. We need simply to replace
the constant DOS, ν, in Fermi’s Golden rule by the cor-
responding Coulomb gap: g(ε), evaluated at the energy
of the charge excitation: ε = eEr. The generic form of
the Coulomb-gap (CG) in isotropic system is given by
equation (24). This leads to an optimal hopping distance
independent of dimensionality: ropt = (e2/κeE)1/2. The
corresponding current is therefore given by:

j0(E) ∼ exp[−(E0/E)
1
2 ], E0 =

e2

κeξ2
. (82)

Strictly speaking, equation (82) is valid for d > 1. In
d = 1, there is a logarithmic Coulomb gap: g(ε) =
ν/ log(e2Nb/κ|ε|), see reference [14] for a similar deriva-
tion of this law in the ohmic regime. For the 1D case, the
parameter of equation (82) is therefore given by:

E0 =
log[(e2Nb/κ)

√
ν/E ]

νeξ2
, d = 1, (83)

in the logarithmic approximation where the energy of the
charge excitation has been taken equal to ε = eEropt and
ropt = 1/

√
νeE is the optimal hopping distance in 1D.

These results may be extended to quasi-1D systems.
For simplicity, we assume that the electric field is parallel
to the chains. More general results with the two compo-
nents of the field can be derived in the same way. We
also focus on the 2D case. Then, Fermi’s Golden rule
of equation (55) is generalized to: ν(eExx)xy ∼ 1. The
tunneling action is anisotropic and takes the usual form
S = 2x/ξx + 2y/ξy. Substituting the x−component of the
hopping length in this action and minimizing the resulting
expression with respect to y yields to the optimal hopping
distances. Substituting the latter in the action we finally
obtain a current:

jMS(E) ∼ exp

[
−

(EMS

E
) 1

3
]
, EMS =

1
νeξ2xξy

. (84)

Substituting the expression for the longitudinal localiza-
tion length, equation (52), this yields:

EMS =
r2sb

2N2 ln2(1/Nb2)
eνξy

, N � Ns,

EMS =
r2sb

2N2
s ln2(1/Nsb

2)
eνξy

, N � Ns.

Substituting the expressions for ν, equation (58), yields
the explicit N−dependence of the parameter:

EMS =
e2

κb
(Nb2)2

r2s ln2( 1
Nb2 )

eξy
, N � Ns, (86a)

EMS =
e2

κb

Ns

N

r2s(Nsb
2)2 ln2( 1

Nsb2 )
eξy

, N � Ns. (86b)

The next step consists, as for the isotropic system, in intro-
ducing the Coulomb interaction, which amounts to replace

the constant DOS, ν, by the Coulomb gaps determined in
Section 3. For the linear Coulomb gap of equation (25)
the non-linear law follows equation (82) with a modified
parameter:

E0 =
e

κ

[
1

ξxξ
1
3
y

] 3
2

. (87)

Substituting the expression for the longitudinal localiza-
tion length, equation (52), this parameter reads:

E0 =
e

κ

[
rsbN ln(1/Nb2)

ξ
1/3
y

]3/2

, N � Ns, (88a)

E0 =
e

κ

[
rsbNs ln(1/Nsb

2)

ξ
1/3
y

]3/2

, N � Ns. (88b)

On the other hand, the anomalous quadratic CG of equa-
tion (27) leads to a 3/5−law in the non-linear regime:

j1(E) ∼ exp[−(E1/E)3/5], (89)

where the parameter reads:

E1 =
e

κ

[
κ

κxξ4xξyb

]1/3

. (90)

Substituting the expression for the longitudinal localiza-
tion length, equation (52), this parameter reads:

E1 =
e

κb2
(Nb2)2

[
r4sb ln4( 1

Nb2 )
ξy

] 1
3

, N � Ns, (91a)

E1 =
e

κb2
(NN2

s b
6)

2
3

[
r4sb ln4( 1

Nb2 )
ξy

] 1
3

, N � Ns. (91b)

Finally, in the small impurity concentration case, the
2/3−Coulomb gap of equation (31) leads to a 5/11−law
for the current:

j2(E) ∼ exp[−(E2/E)5/11], N � Ns, (92)

with a parameter

E2 =
e

κ

[
αrD
ξ8x ξ

3
y

]1/5

, N � Ns. (93)

Substituting the expression for the longitudinal localiza-
tion length, equation (52), in the small impurity case, this
parameter reads:

E2 =
e

κl2s

[
r8sb

3 ln8(1/Nsb
2)

ξ3y

]1/5

, N � Ns. (94)

From equations (86), (88), (91) and (94) for the param-
eters and the expressions of the corresponding currents,
the non-monotonous behavior of j as a function of N is
rather clear.
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We shall not detail the field crossover lines between the
various laws. This can be done exactly in the same way as
for the linear-response regime case. Rather than that we
would like to point out that the phase-diagram, electric-
field vs. impurity concentration, may be obtained from the
one of the linear law by assuming that the electric field
gives rise to an “effective” temperature, TE . This effective
temperature reads:

TE ≡ e E xopt, (95)

where xopt is the optimal hopping distance along a wire
(recall that the electric field is assumed to be parallel to
the chains). For a given non-linear (NL) law of parame-
ter ENL and exponent γNL, the optimal hopping distance
along the wires is defined as:

xopt(N, E) = ξx (ENL/E)γNL , (96)

and depends on the applied electric field and, eventually,
the impurity concentration. The phase diagram, TE(N)
vs. N , therefore has a non-trivial re-scaling via the N -
dependence of TE .

7 Conclusion

We attempted to construct a semi-phenomenological the-
ory of variable-range hopping for 2D quasi-1D systems
such as arrays of quantum wires in the Wigner-crystal
regime. We have closely followed the phenomenological
arguments of Mott, Efros and Shklovskii to derive the
Coulomb gap shapes, Section 3, as well as the main ex-
ponential dependence of the transport laws in the linear,
Section 5, and non-linear, Section 6, response regimes. Our
approach has been supplemented with some microscopic
arguments necessary to derive the impurity-dependence
of the longitudinal localization length, Section 4. Both
Coulomb gap shapes and transport laws were found to
have rather unusual features with respect to known re-
sults in the field of disordered semiconductors [9]. These
unusual features arise because of the non-trivial dielectric
properties of the systems under consideration, Section 2.
They are two-fold: a non-monotonous dependence of the
conductivity or current as a function of disorder and a
highly non-universal exponent γ. In the linear response
regime, the richness of exponents is displayed on the phase
diagram of Figure 4. Despite the fact that some expo-
nents may be close to each-other (1/2 = 0.50, 3/5 = 0.60,
5/11 = 0.45, 1/3 = 0.33), the corresponding monotonic-
ity of the conductivity as a function of disorder enables
further discrimination between the various laws. This is
schematically displayed in Figure 5. Moreover, 2D lay-
ers of wire arrays are experimentally accessible, to our
knowledge [15], but we are unaware of systematic trans-
port experiments in the strongly localized regime for such
systems. Our theory is therefore only of predictive nature.
We hope, however, that it will be of some interest to both
theorists and experimentalists working in the field.

1/2 3/5 5/11 Mott1/2 Act.

− ln σ

1/Ns 1/N

Fig. 5. The logarithm of the resistivity, in the linear re-
sponse regime, versus the inverse average impurity concen-
tration, 1/N , for a 2D quasi-1D system at a temperature:
T � α5/4Ts, where Ts ∝ Es, see Figure 4. The ES (Eq. (61)),
3/5 (Eq. (64)), 5/11 (Eq. (67)), Mott (Eq. (57)) and activation
(Eq. (70)) law succeed each-other with decreasing N .

The results presented in this manuscript were mostly derived at
the William Fine TPI, Minneapolis, during the year 2003/2004.
I am indebted to S. Brazovskii and B. Shklovskii for given me
then, each with his rather unique point of view on solid-state
physics, important advice and comments. This manuscript has
been considerably re-manipulated at the Abdus Salam ICTP,
Trieste. I am sincerely grateful to V. Kravtsov and S. Scandolo
for giving me the opportunity to work in such an inspiring
environment.

Appendix A: 2D model of interrupted strands

As an alternative to the use of equations (18) and (19) the
“disorder averaged” electrostatic potential may be derived
following the results of the interrupted strand model, see
reference [31] of Rice and Bernasconi for the 3D case. In
this approximation, we assume that the dielectric constant
along the chains is given by equation (22). This equation
shows that for Lx/rD = l/rD � 1, the contribution of
the electronic part along the chains is much larger than
the transverse part as well as the host lattice dielectric
constant (κy = κ � κx). The problem therefore reduces
to determine the electrostatic potential of a charge car-
rier in a layer of a quasi-one dimensional system whose
longitudinal dielectric constant is much larger than the
dielectric constant of the surrounding media. Keldysh [39]
has solved a similar problem for an isotropic layer. In the
present case, the Fourier transform of the interaction po-
tential at (r, z) due to a point charge at the origin of the
layer is found by usual methods of electrostatics and reads:

U(q, z) =
4πe2

q̆ + q

cosh (q̆b/2 + δ)
sinh (q̆b+ 2δ)

exp (q (b/2 − z) + δ) ,

(A.1)
where q = (qx, qy) is the two-dimensional reciprocal vector
of r, q̆2 = κxq

2
x + q2y and δ is given by:

δ =
1
2

log
(
q̆ + q

q̆ − q

)
. (A.2)

At large distances q̆b� 1, i.e. for x� l, that will be of in-
terest to us in the following, and for z = 0, equation (A.1)
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reduces to equation (18) with the following dielectric func-
tion:

ε2(q) ≈ κ

[
1 +

κx

κ

bq2x
q

]
. (A.3)

This expression is equal to equation (19) in the limit q̃ =
qx � L−1

x , with κx ≈ κ(Lx/rD)2 and rD ≈ b. This shows
that in this limit, both approaches are equivalent.
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